
Linux Kernel Hardening: Ten Years Deep

June 26, 2025

Kees ("Case") Cook
https://fosstodon.org/@kees

kees@kernel.org

https://outflux.net/slides/2025/lss/kspp-decade.pdf

https://fosstodon.org/@kees
mailto:kees@kernel.org
https://outflux.net/slides/2025/lss/kspp-decade.pdf

"The most likely way for the world to be
destroyed, most experts agree, is by
accident.

"The most likely way for the world to be
destroyed, most experts agree, is by
accident. That's where we come in;
we're computer professionals.

"The most likely way for the world to be
destroyed, most experts agree, is by
accident. That's where we come in;
we're computer professionals.
We cause accidents."

"The most likely way for the world to be
destroyed, most experts agree, is by
accident. That's where we come in;
we're computer professionals.
We cause accidents."

– Nathaniel Borenstein, MIME creator
(as attributed by Nicole Perlroth)

https://en.wikipedia.org/wiki/Nathaniel_Borenstein
https://www.goodreads.com/book/show/49247043-this-is-how-they-tell-me-the-world-ends

Long lifetime of accidentssecurity flaws

● In 2010, Jon Corbet found the average security flaw lifetime was 5 years.
● In 2015, I got basically the same (if not worse) conclusion, even separated by

severity:
○ 2 critical: 3.3 years
○ 31 high: 6.3 years
○ 297 medium: 4.9 years
○ 172 low: 5.1 years

● So, beyond just to large volume of flaws, they also had a long lifetime,
meaning attackers had a huge window of opportunity for any given system.

https://outflux.net/slides/2015/ks/security.pdf

Linux Kernel Self-Protection Project

I announced the project in November 2015 (as an upstream Linux focus area), trying to
gather the many disparate security improvement efforts.

Our two specific goals:

● Remove entire bug classes (stop the whack-a-mole of fixing individual bugs)
● Eliminate exploitation methods (don't make things easy for attackers)

It's been 10 years of cat herding! Beyond the

technical accomplishments, we convinced

the community that the work was needed.

https://kspp.github.io/

Who has contributed?

A huge span of people have been helping over the years! The last time I could fit
everyone on a single page was in 2017. By now, given the breadth of work, it's hard
to get anything close to an accurate count, but to give a sense, it includes:

● Vendors (e.g. Intel, ARM, QualComm, IBM, Cisco, HP, Huawei, …)
● Distros (e.g. RedHat, Oracle, Canonical, …)
● Service Providers (e.g. Google, Netflix, Docker, …)
● Integrators (e.g. Linaro, GrapheneOS, Microsoft, …)
● Contractors, Researchers, and Individuals (e.g. Gustavo A.R. Silva, Nathan

Chancellor, Andy Lutomirski, Alexander Popov, David Windsor, PaX Team, …)

https://outflux.net/slides/2017/ks/kspp.pdf#page=7

The work has had an impact!

Prove it …

But first … Linux kernel flaws and CVEs

● Common Vulnerability Enumeration (maps vulnerabilities to CVE identifiers)

● Linux Kernel became its own CVE Naming Authority (CNA) in Feb 2024,
which changed how CVEs got assigned.

● Prior to that, CVEs were most often assigned by general-purpose distros, and
followed their threat models. (And dramatically under-counted flaws in the
kernel.)

Linux Flaws Venn Diagram of Doom

Omniscient: All flaws in Linux

Linux Flaws Venn Diagram of Doom

Omniscient: All flaws in Linux

Publicly known flaws

Linux Flaws Venn Diagram of Doom

Omniscient: All flaws in Linux

Publicly known flaws

Fixed flaws

Accidentally
fixed flaws

Linux Flaws Venn Diagram of Doom

Omniscient: All flaws in Linux

Publicly known flaws

Fixed flaws

Security flaws

Known but
unfixed security
flaws

Accidentally
fixed security
flaws

Yet to be found
security flaws

Linux Flaws Venn Diagram of Doom

Omniscient: All flaws in Linux

Publicly known flaws

Fixed flaws

pre-2024
CVEs

Security flaws

 Publicly known flaws

Fixed flaws

pre-2024
CVEs

 Security flaws

All flaws False positives
(not security flaws)

True positives
(accidentally fixed or
 identified)
True positives
(unfixed)

False positives
(not flaws)

 Publicly known flaws

Fixed flaws

 Security flaws

All flaws

pre-2024
CVEs

kernel.org
CNA CVEs

 Publicly known flaws

Fixed flaws

 Security flaws

All flaws

kernel.org
CNA CVEs

False positives
(not security flaws)

True positives
(accidentally fixed)

True positives
(unfixed)

Security flaws

pre-2024
CVEs

kernel.org
CNA CVEs

Reminder: the goal is to fix security flaws, not CVEs…
(kernel.org CNA CVEs match reality much better)

Lies, Damn Lies, and Statistics

● I use the Ubuntu CVE Tracker for my vulnerability statistics – they track the
commits that introduced flaws as well as commits that fixed flaws, and they
assign severity. This is everything I need to examine trends and lifetimes.

● Doing a retrospective examination of CVEs across the switch between CVE
assignment methods isn't going to be easy. So I won't! To get a historical
sense of vulnerability class trends, I only looked at pre-CNA CVEs, going
back to 2010.

● Time for graphs …

https://ubuntu.com/security/cves

2038 !

32-bit time_t Unix Epoch wrap!

11111111111111111111111111111111 03:14:07 19 Jan 2038 UTC

 +1 *tick*

00000000000000000000000000000000 00:00:00 1 Jan 1970 UTC

So … integer overflows …

2031 !

2020: BleedingTooth
https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html

struct hci_dev {
 ...
 struct discovery_state {
 ...
 u8 last_adv_data[HCI_MAX_AD_LENGTH];
 ...
 };
 ...
 struct list_head {
 struct list_head *next;
 struct list_head *prev;
 } mgmt_pending;
 ...
};

memcpy(d->last_adv_data, data, len); /* len > HCI_MAX_AD_LENGTH ?! */

https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html

So where is the low hanging fruit now?

Where are all the Use-After-Free flaws coming from?

 30 net/netfilter
 28 net/l2tp
 17 drivers/android/binder.c
 16 sound/core
 15 fs/ext4
 14 net/sched
 14 fs/io_uring.c
 11 net/bluetooth
 10 net/ipv4
 9 kernel/futex.c
 8 net/ax25
 7 fs/btrfs
 6 net/nfc
 6 kernel/trace
 5 net/sctp
 5 net/packet
 5 net/ipv6

 5 fs/io-wq.h
 5 drivers/tty/vt
 5 drivers/net/hamradio
 5 drivers/gpu/drm
 4 net/unix
 4 net/socket.c
 4 fs/ntfs3
 4 fs/namei.c
 4 fs/eventpoll.c
 4 fs/cifs
 4 drivers/usb/misc
 4 drivers/media/dvb-core
 4 drivers/media/cec/core
 4 drivers/gpu/drm/vmwgfx
 4 drivers/block
 3 net/xfrm
 ...

Use-After-Free (UAF) Research and Mitigation

● Google kernelCTF Vulnerability (and Patch) Reward Program
https://google.github.io/security-research/kernelctf/rules
○ netfilter

https://docs.google.com/spreadsheets/d/e/2PACX-1vS…wfvYC2oF/pubhtml
○ io_uring

https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
● Android Binder being rewritten in Rust:

https://rust-for-linux.com/android-binder-driver

https://google.github.io/security-research/kernelctf/rules
https://docs.google.com/spreadsheets/d/e/2PACX-1vS1REdTA29OJftst8xN5B5x8iIUcxuK6bXdzF8G1UXCmRtoNsoQ9MbebdRdFnj6qZ0Yd7LwQfvYC2oF/pubhtml
https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
https://rust-for-linux.com/android-binder-driver

UAF: Type Confusion attacks

● The Linux slab allocator uses pre-chosen allocation size buckets (e.g. 96
bytes, 128 bytes, 256 bytes), so allocations in the same bucket size may
come from different allocated types, including arbitrarily sized allocations (e.g.
allocations via msgsend IPC syscall).

● Attacker finds a UAF for one structure and finds a different structure of a
similar size to target.

● For lots more details, see Andrey Konovalov's excellent SLUB Internals for
Exploit Developers talk during the 2024 Linux Security Summit.

https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mitigation/docs/exploit.md#63-heap-grooming
https://docs.google.com/presentation/d/1_7qL1G-YkNYdOB0mXupAs5Soq4Qnd4lNptjiFl9P3Nw
https://docs.google.com/presentation/d/1_7qL1G-YkNYdOB0mXupAs5Soq4Qnd4lNptjiFl9P3Nw
https://www.youtube.com/watch?v=XulsBDV4n3w

UAF Mitigation: Separate type allocation buckets

● Obvious solution is to separate types so they're not all in the same buckets.
● cgroup accounting already started this accidentally (2 general bucket sets)
● CONFIG_RANDOM_KMALLOC_CACHES explicitly uses 16 (randomly assigned)
● CONFIG_SLAB_BUCKETS splits userspace allocations from kernel allocations
● proposed CONFIG_SLAB_PER_SITE would use a separate allocation bucket

for every call site – totally isolated every kmalloc in the kernel.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3c6152940584290668b35fa0800026f6a1ae05fe
https://git.kernel.org/linus/b32801d1255be1da62ea8134df3ed9f3331fba12
https://lore.kernel.org/lkml/20240809073309.2134488-5-kees@kernel.org/

UAF: Cross-allocator attacks (extreme type confusion)

● An attacker can still force slab memory to get freed back to the page allocator
where it can be re-used by a different slab bucket set or the page allocator
itself ("cross-cache attacks").

● This requires more work to groom the heap layout (but it ends up being a
relatively deterministic methodology: see Andrey's talk).

● This has been used for fun things like forcing a virtual memory address to be
reallocated as a userspace Page Table Entry, and fiddling with the hanging
pointer could change memory permissions ("let's make /etc/shadow
writable via mmap!"). See Jann Horn's detailed write-up on the approach.

https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html

UAF Mitigation: Stop virtual address reuse

● To stop cross-allocator attacks, the virtual memory addresses associated with
a give allocation type need to be pinned so they cannot be reused.

● The proposed CONFIG_SLAB_VIRTUAL does this, but (unsurprisingly) come
with some performance overhead and some utilization limitations.

● Best solution so far is via hardware memory tagging (e.g. ARM's MTE), so
that a given allocation has bits that associated it with a given allocator, state,
and/or generation. But this is limited too: there are realistically only about 4
bits left in a 64bit address that can carry these details. Protection becomes
somewhat probabilistic.

https://lore.kernel.org/lkml/20230915105933.495735-1-matteorizzo@google.com/

Okay, but how did we drive down the other bug classes?
● enforced memory protections (RO text, W^X, SMAP, __ro_after_init)
● replaced reference counters with trapping variant (refcount_t)
● hardened data structure integrity (LIST, SLAB_FREELIST)
● hardened String APIs (USERCOPY, FORTIFY_SOURCE)
● trap stack overflows (STACKPROTECTOR_STRONG, VMAP_STACK)
● obfuscated address locations (KASLR, RANDOMIZE_KSTACK)
● removed all Variable Length Arrays (VLAs) on the stack
● replaced open-coded allocation size arithmetic (overflow.h)
● replaced set_fs() API to avoid user/kernel address space confusions
● improved compiler to reject implicit switch case fall-throughs
● improved compiler to zero-initialize stack variables (INIT_STACK_ALL_ZERO)
● improved compiler to provide Control Flow Integrity (CFI_CLANG)
● improved compiler to actually check array sizes (UBSAN_BOUNDS)
● MOAR…

Okay, but how did we drive down the other bug classes?
● enforced memory protections (RO text, W^X, SMAP, __ro_after_init)
● replaced reference counters with trapping variant (refcount_t)
● hardened data structure integrity (LIST, SLAB_FREELIST)
● hardened String APIs (USERCOPY, FORTIFY_SOURCE)
● trap stack overflows (STACKPROTECTOR_STRONG, VMAP_STACK)
● obfuscated address locations (KASLR, RANDOMIZE_KSTACK)
● removed all Variable Length Arrays (VLAs) on the stack
● replaced open-coded allocation size arithmetic (overflow.h)
● replaced set_fs() API to avoid user/kernel address space confusions
● improved compiler to reject implicit switch case fall-throughs
● improved compiler to zero-initialize stack variables (INIT_STACK_ALL_ZERO)
● improved compiler to provide Control Flow Integrity (CFI_CLANG)
● improved compiler to actually check array sizes (UBSAN_BOUNDS)
● MOAR…

C supports ambiguity

"Ambiguity is the path to the Dark Side.

Ambiguity leads to confusion;

confusion leads to flaws;

flaws lead to suffering.

I sense much ambiguity in you."

– Yoda, about the C language

C supports ambiguity
(but we can fix that)

● "Unexpected Behavior" is the
source of so many flaws, a
superset that includes "Undefined
Behavior" which is just one special
case of "language ambiguity"

● and of course the lack of memory
safety, no variable lifetime
enforcement, no safe concurrency

What to do about it?

● Remove ambiguity in C
● Write new stuff in Rust

With Undefined Behavior

Anything is Possible
https://raphlinus.github.io/programming/rust

/2018/08/17/undefined-behavior.html

https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html

Remove Ambiguity in C
"uninitialized" stack variables

There is no such thing as "uninitialized" !th -ftrivial-auto-var-init=zero

int function(int input)
{

int on_the_stack; /* contains whatever was on stack */

return input * on_the_stack; /* returns what??? */
}

Some compiler folks worries "this will fork the language" … YES PLEASE

https://media.defcon.org/DEF%20CON%2019/DEF%20CON%2019%20presentations/DEF%20CON%2019%20-%20Cook-Kernel-Exploitation.pdf

Remove Ambiguity in C
"uninitialized" stack variables

So now we build with -ftrivial-auto-var-init=zero ...

int function(int input)
{

int on_the_stack; /* contains 0 */

return input * on_the_stack; /* returns 0 */
}

Some compiler folks worried "this will fork the language" … YES PLEASE

Remove Ambiguity in C
not all arrays can be bounds checked

struct foo {
 …
 …
 int fixed_size_array[16];
 int flexible_array[];
};

Can do bounds checking! (16 elements)

No dimension: no bounds checking :(

Remove Ambiguity in C
yes all arrays can be bounds checked

Now we can use the counted_by attribute …

struct foo {
 …
 int items;
 int fixed_size_array[16];
 int flexible_array[] __counted_by(items);
};

Can do bounds checking! (16 elements)

Can do bounds checking! ("items"-many elements)

Remove Ambiguity in C
next: pointers can be bounds checked

And coming is the counted_by_ptr attribute …

struct foo {
 …
 int num_items;
 struct item *items __counted_by_ptr(num_items);
 …
};

Can do bounds checking! ("num_items"-many struct item instances)

https://gcc.gnu.org/pipermail/gcc-patches/2025-May/683696.html

Remove Ambiguity in C
soon: integers can be bounds checked

On deck is the __nowrap attribute …

typedef __nowrap unsigned long size_t;
size_t position = 0;
position --; // boom

__nowrap u8 index = 255;
index ++; // boom

Will no longer silently wrap around!

https://discourse.llvm.org/t/rfc-v2-clang-introduce-overflowbehaviortypes-for-wrapping-and-non-wrapping-arithmetic/86507

Remove Ambiguity in Compilers

The C Standard is strict, slow-moving, and prioritizes compatibility over robustness.
The key to making any practical progress with GCC, Clang, and even MSVC is to
use the magic phrase:

I would like to add this Language Extension …

Then coordinate the extension between compilers, and the C Standard can catch
up when they're ready.

Remove Ambiguity in Compilers

The C Standard is strict, slow-moving, and prioritizes compatibility over robustness.
The key to making any practical progress with GCC, Clang, and even MSVC is to
use the magic phrase:

I would like to add this Language Extension …

Then coordinate the extension between compilers, and the C Standard can catch
up when they're ready.

Also: Write New Stuff in Rust :)

It's a long road, but the language bindings have been steadily
landing. Entire graphics drivers have been written in Rust:
Apple AGX, Nova. Also filesystems, block drivers, network
PHY drivers…

You know it's time to ditch C/C++ when even governments
have noticed the dumpster fire. National Security Agency
(NSA), Cybersecurity and Infrastructure Security Agency
(CISA), and Office of the National Cyber Director (ONCD):

The Case for Memory Safe Roadmap

Exploring Memory Safety in Critical Open Source Projects

https://rust-for-linux.com/

https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://www.cisa.gov/sites/default/files/2024-06/joint-guidance-exploring-memory-safety-in-critical-open-source-projects-508c.pdf
https://rust-for-linux.com/

Thank you!

Questions / Comments?

Kees ("Case") Cook
https://fosstodon.org/@kees

kees@kernel.org

https://outflux.net/slides/2025/lss/kspp-decade.pdf

https://fosstodon.org/@kees
mailto:kees@kernel.org
https://outflux.net/slides/2025/lss/kspp-decade.pdf

